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Abstract. Deep Space Oue (1)S1) will be the first spacecraft to he con-
trolled by an autonomous closed loop systenl  potentially capable of car-
rying out a complete mission with minimal conlrnanding  from Earth.
A major component of the autonomous flight software is an onboard
planner/scheduler. Based on generative planning and temporal reason-
ing technologies, the planner/scheduler transforms abstract goals into
detailed tasks to be executed within resource and time limits. This pa-
per discusses the knowledge acquisition issues involved in trausitioning
this novel technology into spacecraft flight software, developing the plan-
ner in the context of a large software project ancl completing the work
under a compressed development schedule. Our experience shows that
the planning framework used is adequate to address the challenges of
DSl and future autonomous spacecraft systems, and it points to a series
of open technological challenges in developing met}loclologies  and tools
for knowledge  acquisition and validation.

1 Introduction

The future of the space prograln  calls for ambitious missions of exploration
ancl scientific discovery. Searching for life orl .Mars, Europa and elsewhere in
the solar system and beyond will require the solution of several challenging
technical and orgarlizatiorlal  problelm.  A central orle is tl)e irll~)letllelltatiotl of
increasingly capable and autorlonlous  cotltrol  systems to ensure both mission
accomplishment and mission safety [17, 6, 15]. \Vithout  these  systems missions
will have to be rutl with the current, traditional approach. This relies on frequent
comlnunication  with F.alth  and tealils  of hlllllail  experts guiding step Ly step
a Inission through its tasks alld analyziI1g arid rcactiIlg  to tile occurrence of
malfunctions. The cost and logistics difficulties of this ap~)roactl, however, are so



Iligll that it cannot bc reasonal)ly  carried  ovLIr to tile cxIJcctcd growth  of missions
a n d  ~tlissiori capahilitics.  Autotlollly  tecll~lology is arl arlswer to tllcsc  problcIns.

The  Renlote  Agmlt (RA) [12, 13] will be the first artificial intellige~lce-basecl

autonomy architecture to reside in tllc flight processor of a spacecraft and  con-
trol it for 6 days without ground itlterverltion.  Tile Inission  on which RA v,ill fly
is Deep Space Orle (DS1), the first clec~)-s~)ace missiorl  of N.4S.A’S New Millen-
nium Project. RA achieves its high level of autorloluy  I)y usirlg all arcllitectur-e
with three colnponellts:  an i~ltegrated planning and scheduling systeln  (PS) that
generates sequences of actions (plans) frol[l higll-le~’el  goals, a illtel]igent  execu-
tive (EXEC)  that carries out those actions alld can respo~ld to execution tinle
anomalies, and a Model-basecl Identificatioll  and Recovery system (MIR) that
identifies faults and suggests repair strategies. Each module covers a different
function in the architecture auct uses a different computational approach One
characteristic however is common to all of the[n: the reliance on models of the
domain that are largely i~ldependent from the task to be fulfilled. These nlod-
els allow the module  to rely on a much deeper understatlding  of the structural
characteristics of the cloniain than I)ossible  with classical rule-based approaches,
facilitating model analysis ancl luodel  reuse. The module achieves its function Ly
processing the moclel with a nloclule)s reasoning e~lgine, independent fro~n  the
specific application. This processilig  also relies on additional heuristics k[lowl-
edge that guicles the engine into Iilaki[lg  inforlned  clecisions during the search
process.

This paper discusses the knowledge acquisition process used for models and
heuristicsof  the plannillgancl scheduling system (PS) of DS1. We started the
process with an approach to planning k[iowleclge representation [lO] that hacl
been demonstrateci  in a rapid-prototyl)e  effort [12]. JVitll DS1 we had to face
additional challenges due to having  to develop PS in the context  of t}lc clevelop-
xnent of the full flight software, to the additional coluplexity  of the donlaill,  to
the compressed schedule for develo~)![le[lt  at~cl to tile risk-lllatiagclllellt  require-
luents.  Also, architectural solutions irlter~lal to RA had to be e~lhanced  due both
to the incream  in capabilities that were needed to co[ltrol a real spacecraft and
to the need to provicle sounder software engineering approaches. \tTe will describe
how the krlowledge  accluisition ~)rocess  was carried out and the strengths a~~d
weaknesses we found in our current a~~proacll.

Section 2 deals with the Relnote  Agellt software architecture highlighting the
details of the planner  and it’s plarl representatiorl.  Section 3 deals  !vith issues
in k~lowledge acquisition including referellces  to the s~)iral developme~lt process,
model acquisition a~ld interfaces  to external experts. Sectioll  4 deals with the
ope~l issues as a result of tile developlne[lt  I)rocess  itlcluding  the Ileed for vali-
clatio~l and debuggillg  tools. Fi[lally Sectioll  5 concludes  with an outli~le of ttle
work ulldertake[l.

2  T h e  R e m o t e  Agent ancl Planncz-  Architedures
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Fig. 1. RA  arc}litecture

The RA architecture cousists  of four distiuct compoucuts  (Figure 1), the Plan-
ner/Scheduler, the Mission Manager [1 1], the Smart Elecutive  (EXEC)  [14] and
the Mode ldentijication  and Recovery (MIR) system [16, 17]

The execution of plans by the EXEC  is achieved by iuteractiol}  with a Mode
Identification syste~o aud a lower level real time xnonitoriug aud cout,rol compo-
nent. MIR provides the EXEC with a level of ahstractiou to reason about the
state of the various devices it commauds.  l’he  monitoring layer takes the raw
seusor  data aud discretizes  it to the level of abstraction neecied by the MIR.
~iually,  the control  and real-time system layer takes commauds  from the exec-
utive and provides tlw actual control of the low level state of the spacecraft. It
is responsible for providiug the low level sensor data strealn to the xno~litors.
Details of the Relnote  Agerlt architecture cau be fouud iu [12, 13].

%“’
Fig. 2. I’larlr~er/Sct~ccl[ller Architecture

The pla~lner/scheduler  (1’S) geuerates  a detailed plari of actiou  from a haud-
ful of high-level goals, based  on kllowledge of the sl)acecraft  co~ltaiued i~l a do-
lnain  model. The model describes the set of actiolls,  l~oiv goals decolllpose  iuto
actiom, the constrai]lts  alllong actions, and resource utilizatioll  by tile actions



‘1’lic platl[lillg cnlgille Searctles  tllc sl)ace of ~msit)lc  plarls fox one that satisfies the
co~lstraints  and achieves the goals. The act ion defiuitiolls  dctctlui[lc  tile space
of pkuls. The constrairlts  deternline  which of these  ~Jlaxls are legal, and heavily
prune  the search  s~jace. The heuristics guide tile search in orcler to iucrease  the
number  of plans that can be found within the tilne  allocated for planning.

Figure 2 describes the overall view of the Remote Agent Plan[ler/Scheduler,
The Mission Manager (MM) contains  the loILg  ter~u mission plarl with goals for
tile entire Iuission. C;round operators call i~lteract with the Mhl to moclify the
plan by adding, relnoving  or editing goals irk the mission plan. The Nlhl also
provides the EXEC  with a~i irlterface  to the E’lalincr. When the EXEC  requests
a new plan, ML! selects a new set of goals frolu the mission profile, }jased on
internal way points. It combines this with the initial state provided by the F;XEC
a~ld generates a partial plalL for tt[e planner. JVhell the EXEC  has completed
execution of this plan the cycle is completed when it sends a new request to the
MM for the Ilext planning horizon. For tile RA experi[ueut  the plan horizon will
consist of two segments each three days long.

2.1 Knowledge Representat ion of  the p]anner

The kuowledge  representation of the planner is distributed amo~lg  the cloruai~l
Iuoc]els,  the planner heuristics, the mission profile and the plan experts. The
clomain models encode the behavioral aud o~)erational col]straints  imposed ou
the spacecraft by the ruissio~l and the harclware.  The heuristics guide the planner
search to decrease the co~uputatiotlal  resources needed to fi(lcl a plan a~)d to
iucrease  plan cluality. The mission profile encodes tile long term goals and mission
requirements as determined by the grouncl  controllers ald luission designers, a~lcl
resides in the h’fission  hlanagers  temporal database. Finally the plan experts are
special-purpose software Iaodulcs, writte~l  ancl mailltaimd by otlmr teallls, with
which the planner interacts to obtain fiuowledge that cannot be easily encoded
iu the plan  ~noclel

Model Representation. The PS uses a hybrid platltli[~g/sclled(llillg  represen-
tation that models continuous process on parallel timelitles  to describe actions,
states and resource allocations. PS pro~’ides  also for temporal and parametric
flexibility and uses planning experts.

Plal~s consist of several parallel t27T1elz7tc3, eac}l of which consists of a sequence
of toke7is. A timeliue  clescribes  the evolutio~l of a spacecraft state over time,
and the tokens clescribe  those states. For example, consider  o~le timeline  that,
describes the main eugiue. If the pkul is to start ill stallclby,  fire Llp the eugine,
and return to standby,  the tilneli[le  would have one token for each of those
processes. Each toketl has a start til~le, allcl ellcl tilne,  ancl a cluration.  E a c h
token can have zero or nlore arguments (e.g., tile thrust level at whictl to fire
the engine)

The plan model consists of defitlitio!ls for all the tiulelines,  definitions for
all the toke[ls tlmt catl appear 0[1 tll[m tilllclilles,  allcl a set of teul~)oral  con-
straints that lnust hold among tile tolieils ill a valid l)laIl, Tile  ~)la]l~ler tlm[lel is



dCSC~i~J[’d in a  dor[lain  dCSCI’i[)tk)rl  laH~Lla~(!  (~DL), aIld k IT[)N!S(![lkl  aS patt

of t i le  ])]anrlU’S data baSC ah Calkl  thC! p]and[J,

Telnporal  constraints are specified in DDL by compatibilities,  A conlpatibility
collsists  of a master token and a boolean expression of tenlporal  relations that
n~ust hold \JetWeell  the master token and target tokens. An example is shown in
Figure  3.

(Define. Compatibility

;; compats on SEP_Thrusting
(SEP.Thrusting ?heading ?level ? d u r a t i o n )

:compatibility-spec
(AND
(equal  (DELTA  MULTIPLE (power)

(+ 2416 Used)))

(contained-by (Constant-Pointing ?heading))
(met.by (SEP_Standby))
( m e e t s  (SEP-Standby))))

(Define-Compatibility
;; Transit ional  Pointing
(Transltlonal_Pointlng ?from ?to ?legal)
:parameter-functiosn

(?_duration_  <- APE_Slew_Duration  (?from ? t o  ? _ s t a r t _ t i m e _ ) )
( ? - l e g a l - < -  APE_Slew-Legality (?from ? t o  ?_start-time_))

:compatibility_spec
(AND

(met--by  (Constant-Pointing ?from))
(meets (cOnstant_pOintlng  ?to))))

(Define_Compatibility

;; Constant Pointing
(COnstant-Pointing  ? target )
:compatibility-spec
(AND

( m e t - b y  (T.ansitlonal-Polntlng ● ?target  LEGAL))
(meets (Constant-Pointing ?target * LEGAL))))

Fig.3. An exalnplcof a compatibility corlstraint ia the I’lanner  moclel

The filst  conlpatibility  says that the master toke~l, SEP_THRUSTING  (when
the Solar Electric Propulsion engine is ~)rocl[lci[lgttlrllst),  nlust  be inltncdiately
preceded and followed Ly astandby token, tcnlporall  yco~ltaine  flhy aconstant
l)ointirlg  tolwl, ald requires 2416 Watts of power. Constant pointing inlplies that



ttlc s~mcecraft  is i[l a steady state aillli[lg it’s ca~nera  towards a fixed target in
space. Transitio~l poi[~titlgs refer to tllc slewillg activity required by the spacecraft
to Inove from OIIC  poi~lting to tllc Itext. TIIe sta~ldby state of SEP in~plies  that
the engine is not thrusting but has Ilot bef.’n  cornpk!tely shut off. A plan fragnle:lt
basccl on these co[npatibilities  is showtl in Figure 4,

Constant Transition Transition Constant

Po in t ing(A)  Poinling(A,l?) Pointing(B,C)  P o i n t i n g ( C )
COnstant_Pointing(it)

I I I

—-—-  - - -
l----
._&-_l

.

_ - 7 - - - – ’
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Fig.4.  I’lan Fragrnerlt

DDL provides a high level language for specifying the spacecraft require-
ments  in ternls  of beilavioral  constraints (e.g., standby follows thrusting) a~lcl
operational constraints inlposed  by mission policies.

Heur i s t i c s .  llelltistics gllicle evelycllcJicc~ )oitlto fthe~Jlaxltlerss  earcll. Oneacll
iteration of the search, the planner chooses an unresolved compatibility con-
straint and a way to resolve it: by constraining an existing token to satisfy the
constraint, addillg  a new toke~i that satisfies it, or wsurning  that it will be sat-
isfied by sonle token in the next horizon. There are other decisions as well, such
as grounding uncler-constrai[  led argunlellt  values.

Method Connect
;; connect only, defer and add are disallowed.
m a s t e r  {  Transitional_Pointing; }
target { Constant-Pointing; 1

Fig.5. Cycle Avoidance Ileuristics

Forexalnple, thelleuristicin Figtlre  51)r('\'e11ts  t)acktrackillg  dlletocycli1lg.
The attitude tillleline  alternates Wwcell co]wtant  pointing tokens  a~ld trallsi-



tiollal  poirlti~lg  toketui.  ot}rc a constant ~)oilltillg  tokt}ll i s  a[l(lefl,  i t  has coln-
I)atibilitics  that could a(ld trallsitimml  ~mil~tillg  tokcl)s, wllicll can ill turu a d d
constant pointing tokc[ls add in finitu[tl. Ttw last lwuristic  b~eaks the cycle by
saying that a transitional pointing tokcll cau connect  to an existing col}stant
poirlting  token, but  can never cddo~lc.

Missionprofi]e.  Tllcgoals forttle e~ltire lllissioll arestorecl itlatlorl-boarcl file
called the Tnzssionprofilc,  which isxna[lagwl t)ytllehlissioll Manager  .T1le profile
captures nlissio noperatioll  sknowlcdge,  such as }v1lCII  ttlecc)rrlltltltlicatiolls  passes
are scheduled, how INUC1l  fuel is allocated for each seglne[lt of the mission, w’hen
various r[~ission  phases start al~rl stop, and so o~).  The profile also serves as the
~)rir[lary  itlterface  w'itl~tt~e grotlI\cl  col~trollers.  The ground teartlcoxllrt~a~lclsthe
spacecraft at a high level by changi:~gor  addiilg  goals to t}~e profile.

Plan Experts. A large software project like tile I)S1, requires the contribution
of several teams with specialized ktlowledge. Planning Experts are progranls
developed ax]d maintained by other teams.  They  coordinate with the planner
but which are not strictly part of its domai[l represe~itation.

A prime  example  is the Attitucle  control Platlnillg  E;xpert (.4PE),  wh ich
answers  cloeries about whether a ,givell turn violates poi[ltitlg co;lstraints  (i.e
while turning the spacecraft froltl ol)e target to the other will the camera  be
exposed to some bright radiation source damaging  it in the process ?) and how
loIIg the turn will take.  Ilow’  violatioll  constraints are calculated is colnpletely
opaque to the plat~ner.  As a result, separatil]g  the platl  experts from the planning
model siulplifies  the k[~owledge  acquisition and software  lnainte~lance  process.
Quite often,  clue to the s~)ecificity  of these lnodules,  the code is also reusable
across n~issiolls. For installce,  Inuch of the code for attitude colwtraint  violation
ill APE came from NASA/ESA’s  Cassini  lnissio~l  [5].

There are two kiuds of ~~lan ex~)erts. I’lie first kind ans~vers  questions about
collstraillts.  APE is of this variety. TILe seco~ld kiucl of plal} ex~)ert  generates goals
for ttle planner to achieve. These oil-board  goal generators allow the spacecraft
to make autonomous clecisiolls, within  certai~l l)ararneters,  based OIL local infor-
ltlatio~l. Tile prime example on 11S1 is tllc o~l-tmard llavigator,  ~vhich provides
goals oll trajectory related maneulws  and goals for i[llages of nearby  celestial
l)odies fro~ll which NAV call deter]l)ille  tile s~)acecraft  ~>ositioll.

Tile plamler  asks the goal gcllerators  for goals JVILC1]  the ~)lanller  is ready for
tllenl.  The goal getlerators  have no visibility illto tile plan, other than  wilatever
information provided ifl the request. JVheIl  ttle goals are returned, the ~)lallner
decides how they will be achieved ill tile plan, o r  lvlletller  they are achieved
at all. If the plan  is ov(’r-collstrai~lt’{1,  goals earl I)e rejected based on a global
~)rioritizatioll  scllet[lc.



3  TIIC K n o w l e d g e  A c q u i s i t i o n  P r o c e s s

Tradit ional ly flight software for a s~m.ecraft  co[lsists o[lly of 10IV level device
drivers, attitucle Co[ltrol systcvll and si[n~)le scquwlcc cxecutioll  capabilities.

Colntnalding cfotle from g r o u n d  allows t}ie o~xxational  and mission coll-
straints to be clesigtled atld i][lpletlwntcd  at a later titnc,  sonletilnes  even a f t e r
lau~lch. With on-board  alltonolny, tile desig[l process ~nust take a more coln-
prehensive view to the full mission life cycle including from tllc  vc7y kgi717Li7Lg

ttle rnocles,  operations and exr)ected behaviors of tile s~~acecraft  in tile doltlaitl
xnoclels,  To accomplish this we used a Spiral Ilevelopn~ent  model.

Irl the followirlg sectiolls we discuss the Icllowledgc  acquisitiol~ process and

Inethodology for the  planner and  t~le reslllting proble~lls  and issues they raisecl.

3.1 The Spiral  Development  Process

In a Spiral  development  [1] for each clevelopr~lent  cycle, management identifies
subsystem and moclules that nmst  be developed, tested, and illtegratecl.  hlearl-
while, processes and standards are further refined. At the encl of each develop-
ment  cycle, project teams  meet  to discuss the obstacles they e~)countered and the
lessons they learned. This creates a systenl  for tracking problelns  and  resolutions.

For DS1, this allowed us to work on basic fu~lctiollalities  and understand the
issues involved before tackling more colllplex fullctionalities  (see [8] ). At the
beginning of each sl)iral, the rnissiolL  engineers created a baseline scenario that
would exercise the new functionality for that spiral while still requiring the old
functionality. The  hardware Inailagemellt  tealn (FI\YMT)  then arrangecl  several
days of fulowledge  acquisitio!l  ~tleeti[~gs  ~vith tile harclviare clevelopers, ~vho would
detail the software requirelnellts  for their hardware to \vork correctly.

Each of the nlodeliug  and software clevelop~[)ellt  teams  serlt representatives
to these lneetings.  Tile hardware developers ~)rese~lted the baseli~le bella~’ior for
the upcomitlg  spiral, al\d the moc!elers  asked questiolls  to elicit further details.
Since eacil COIIlpOlleIlt Of the R.A  IIIOdCk tile hal~lVale at a C~ifff21Wlt hd, ha\’iIIg
representatives from each teanl  was particularly helpful it] identifying i[iteractio~l
issues across the different levels.

The DS1 Spiral releases were desi.qlated  RI through R3. To give tile reader
the scope of developxnellt that took ~)lace, \vc sllo~v  the evolution of the planner’
l~lodel sizes for each revision in tables 1, 2 and 3.

Fro~n the I’S ~Jers~)ective each revision ill tile s~)iral develo~)~ne[lt  IIlodel itl-
volved successively sophisticated collstrai[lt  ~llodcli~lg of the spacecraft. III the
first revision the tl~odel oIlly dealt with simple turl~s and ~)icture taking  for
navigatioli  illlagcs; mote  complex issues such as powm, tller~nal modeling !vere
ig[iored. III the next revision the [nodel  included  the Illodelillg the SEP  engines
and obtaining  Illore detailed trajectory i[lforlllat ion fro~tl the [Navigation ex~)ert.
Tl~e third s~~iral  release added power lllal~agellit’l)t, a(lvanced  tur]ls,  an(l co[llct
fly-by relate(l  activities.



Suhsystet[l 1{ 1 1{2 1{3

Mission events o 1 3
I’ower o 0 2
Iori 1’ropulsio[l 1 5 5

Attitucle con t ro l 3 4 4

CYorli[[lurlicatiO[is o 1 2
MICAS 1 1 6
tkacou ex~]cri(llerlt o 0 2

RCS system 1 1 3
Navigation 3 3 ‘1
l’larlrler/scllecl  ~ller 1 1 1
‘1’otal 10 17 32

Table 1. Modification of tirnelines in the nlodr4 over t}le spiral Cfeve[opment  releases

Table

Subsysteol
— .

Rl R2 R3
‘rot Add Mod I)CI ‘lbt Add hlod I)el q’ot

hlission  events o 1 1 5 6
Power o 0 3 3
Ion propulsion 1 11 1 12 1 3 13
Attitude control 4 4 8 6 2 1 14
Coxllrllllllicatiorls o 3 3 2 2 5
MICAS 3 5 8 14 22
Beacon experiroent o 0 4 4
RC;S system 1 1 4 1 5
Navigation 6 2 6 3 9
I’larll,er/sct]  cduler 2 2 2
Total

.
17 41 69

2. Modifications of token ty~)es over the s[,iral dcveloprneut releases

3.2 Model Acquisi t ion

Model acquisition in each cycle would start with the cogllizant  system engineer
laying the baseline functionality to be covered, layered orl to~) of rlcsigtls of
subsystems already inlple~nented. ‘1’he tnodeler  for the plannilig  team would
then be required to list the llew functio~la]ity required aIId changes to the old,
These would be put into a Problcrn .! Wtement  givilIg a broad outlil)e  of tasks the
planner rvould be needed to do for ttle current cycle, alorlg with specifyirlg arly
additional fortllal  it~terfaces  ill the form of illter-prcrcess Col]lrll(lllicatioll messages
(see Sectio~l 3.4). Tea~ns  with interfaces witt, tile I~larllwr (es~~ecially tl~e EXE(3)
would  comment  al~d p~oposc  clesigl~ c})anges  alld ar~y additional requirernellts,
After a few iteratiorls  of this ~jrocess, tllc IIlodeler would update the TokcT~
Dzct207m7y. T}Ie token dictiollary  details tile syntax  and sernarltics  of each tokerl



‘Sllhsyskr[l

,1’ower (1 o 0
1011 I’rOpulsioIl 3 11 14
Attitude control 2 11 16
(~O1lllllllllicat  ions o 3 7
MICAS 3 3 20
IIcacon  expcril[)cnt o 0 4
RCS Systr’tll o 0 2
Navigation 4 3 7
I’larlrler/sctledlller 2 2 2
‘1’otal 16 36 76—

Table 3. Moclificatioas  of colllpatibilities  in the model over releases

type on all the tinlelines  and fornm the prilnaty docunlent  for all negotiated
informal interfaces with the EX13C.

This would inlply changes to the existi[lg tokens along with tinlelille  and
token additions as necessary. The core task of the model acquisition process
would then be colnplete  a~ld the nlocleler  would then  Inove towards inlplementing
the design changes. As mentioned earlier (see Section 2.1), this would pritnarily
involve changes to the dolnaiu  n~odel,  IJlallller heuristics and the n}ission plan.

In each revision of the Spiral clevelopnlent, approximately eight, weeks were
neecled for knowledge capture and another eight weeks for nlodel  clevelopnlent
and tuning of the planner scarcll.

Issues in DomainMocleling.  Inmodelingf  ortlleI)Sl rllissio~l,  ~t’ecliscovetecl
that a relatively large nuItitJex of modeling tasks were easy to clo, given the
syntax and se~nanticsof  DDI,. In acouple of cases Jvehacl  to i~ltroduce auxiliary
tilnelines  to support the planner’s reasoning process.

For instanceit  wasllecessary toschedule ttlecorrectanlount  of SEP thrust
within a planning horizon. Simply put, this would rccluire  colnputing  the clu-
ration of each SEP thrust toke[l a~id perforlning  a sunllnation  over the pla~l-
Iling horizon. To do so however, a so~neyvhat  circular approach was needed by
defining a Ilekv tinleli~le which woukl use variable codesig!lation  and propagate
acculnulated  thrust values based on tet[lporal  durations of the SEP thrust to-
kel~s;solllet}lillgllot  altogether intuitive. Figure  6illustrates tllissituatioll  with
tile Max Thrust duratio~l specifyitlg tile thrust cluration  needed in the horizon;
SEP thrust toke~ls actually ~CTf07’TlL27L/J the tht’ustillg action and Accumulated
thrust tokens show’ing  a running  cou?lt of the thrust.

As luentiolled  earlier, with each iteration of tile developnlent  cycle tile planner
n~oclels were n~ade consistently ~l~ore realistic. Iillo\vledge acquisition fronl each
s~)iral cycle effectively e[lded u1) affecting ttlc ~Jlallller’s  rlolnain Inodel a[ld it’s
heuristics. \Vhile syntactic IIlodificatiotls  and its se[llalltic  irlter~)retatioll  Jvere



Accumulated Accumulated Accumulated

Thrusl(0,40) Thrus((4Ll,80) Thrus[(80,  100)

Fig. 6. A plan fragrilerlt i[il~,lelllentirtg thrust ar-cu[llulation within a IJlan horizon

the priruary  drivers of model  development (eslwcially  if interface requirenlents
at the token level were to be IIegotiated  with the 13XEC (see Section 3.4)) we
discovered that a n~ajor chunk of developnlcllt  tinw  was alignitlg  the heuristics
with the nlodel changes so that planner convergence w’as  possible.

Heuristics. Because of the tight coupling of tllc doulain  nlodel  to the heuris-
tics, changes to the model ahnost  always require corresponding changes to the
heuristics. This nlakes it difficult to iutrocluce increnleutal  chatges to the n~odel.
Nornlally,  a fan~ily  of titneliues  corresponding to a new clevice or capability can
be added with ~ninirnal impact on other tinleliues.  Most of the constrairlts  are
anlo~lg  the tirnelines  in the fanlily, with a handful of constraints to external re-
sources such as power or spacecraft attitude. However, the new tiuleliues  change
the optitnal  search strategy, and this requires tile heuristics to be re-tuued.

3 . 3  Unnlodeled  Ac t iv i t i e s

Sonietinles  the ground controllers want to execute nlaneuvers  that do llot obey
the flight rules, and are therefore not nlodeled the ~Jlanner. For exanlple,  they
n~ay want to execute a high-speed turl~ in order to jar loose a stuck  solar pane].
Tile  nloclel nlust  provide a way for the ground controllers to execute contitlgency
nlaneu~’ers  such as this without uploading a xlew nloclel. Changing the xnodel
nlaybe  fine for perulaneut patches, but the tilne  and cost needed to develop and
test the patch nlakes  thetu  inlpractical  for olle-ti~lle cvnergency  nlaneuvers.

In support of this requireuleut  the nlodel provides a special activity to-
ken that can stand in for any activity the ground wants to execute but is not
other~vise  supported by the planning nlodel. Tile ground co[ltrollers  insert the
token ~rhere  they want it in the Iuissiou profile. It can be sc]leduled for a spe-
cific tinle,  or scheduled relative to other events. The activities perforlued  by the
tokell are specified in a file of time-tagged low-level coln~l~ands  that the EXEC
executes at the begilllling  of the tokerl.

Since the actions executed in the sl)ecial acti~’ity token are Ilot lnodeled  by
tlw plal\ller.  it is l)ossible that they could col~fiict lvith planned  activities. For
txullple,  the plau could be tryiug  to Ilo]d ttle slmcecraft  still ill order to take au
i]llage while the special activity token is executi[)g a liigll sl)eed turn.  To avoid



sucli c o n f l i c t s ,  collstraitLts can lw s~wcifie{l }Jetwccvl tile s~)ecial acti~’ity toke[l
w)(I other t,okells  ill tllc plarl. In this case, attitude depcudent  activities would
be disallowed w’llile the s~wcial activity toiwu \vas active. These  constraints can
be specified iIL the Illissio!)  profile.

3 . 4  It~terfaces

The interfaces betwccll  the l)lall[ler and other parts of the flight software imp-
act the kuowledge accluisitioll alld represe[ltatio~l,  The planner has two main

interfaces: interfaces with plan  czpcrts,  and interfaces with the Smart Executive
compoue[lt  of the RA.

Plan Expert Interfaces. Negotiating tile pla~l expert interfaces was alnong
the ewiest of tile lalowledgc accluisitio]l tasks. This is largely due to the opaque-
ness of the plau experts to the plauuer  aud vice versa. The bulk of the knowledge
accluisition  wasin the very first Iueeting,  where the focus wasuudcrstandinghow
the plan expert worked and explairliug  planlier  concepts to the plan expert de-
velopers. In the case of APE, the plannirlg  team  rlecdecl to uuclerstancl how to
specify a turn, and what iuforrnation  was neccled for APF, to corupute  a turn,
The details of how turns are computed were irrelevant.

Once this initial knowledge acquisition  was co:npleted,  subsecluent  interface
~legotiatio~ls were co~ll~)leted i~laxl~atter  ofl~o~lrs,  ~~sllally by~>t~o~le  orexl~ail. The
interfaces were forlually  definecl  as C structures that specified the information
passing from the plauuer  to the plan  expert and back. These were captured
iu an interface coutrol  documctlt,  and in all executable iuterface  specification
language.

II) solne cases, the I)lallner used assuulptiorls  about the itlner  ~vorkings  of
tile plan expert to im~)rove efficicllcy. For example, the legality ancl duratioll
of a turll changes slowly aud contitluously  over time. This allows a turx~  to be
moved a couple hours ahead or back ill the plan as needed without affcctitlg  its
duration or legality. T}IC planner model  a~ld heuristics exploited this knowledge
to simplify the design and speed u1) tlIe search. Assumptions of this sort were
rare, and captured explicitly in the interface coutrol  documents.

EXEC Interfaces. The interfaces between theplauuer  and tile Smart 13xecu-
tivc (EXF,C) arc emboclied by tl}e till~elil~c and tokel) definitiox]s included in the
planner’s model.

In order for tile EXEC  to execute ~)lalls, it ~llust k[iow ~vllat toke~ls  call appear
in the plan a[ld how to ex~)aud those  tokells  itlto dctai]ed  colulllallds  to tile real-
titne  flight software. This creates a very St[-ollg rc)ul)li[lg  between EXEC  and
the })launer.  All of the tiluelilles,  tokells,  aud their  sellla]ltics  tvere negotiated at
tile  beginni~lg,  of each sI)iral before ally irtl~)lel[~elltati~>[l took place, However, if
the need for another toketl ~v~s discovered during developll~cut, or SOIUC tokel~
rlceded another argutnrmt,  or tile serllautics  ~vere ~vrollg. then tile EXEC  and PS
had to cilal)ge their  i~lll)leIllelltatit)lls  accor(lillgly. rk’ca~lse tile t(~kells are S,UCII  a



I[lil,jor l)art of tile I[lo(l(:l i[lll)lc’[[lcrltatic)ll,  clIaIqjcs of this  sort crcc~lrrcxl ill every
dcvcloprlletlt  sl)iral despite strong efforts to ~)reve[lt tl)c~ll.

Several  solutions to this interface issue wera consi(lcrwl for DS1. One success-
ful approach was to use information hidi~~g to create  private token argunlcnts.
Additional argu[llents  arc often needed to Ilold  values derived froln other argu-
ll~ents, or to propagate values fronl other tokens. Tile need for these arguments
oftell  goes unnoticed until develol)lncnt  begins it] carllc~st. Private argulllents  are
secll by tile platlner,  but  are do not appeal ill tllc plan. This allowed ruodelers
to aclcf argunlex~ts for bookkeepil~g  and propagatio[l  purposes without  impacting
the EXEC.  This capability was introduced at the end of the R2 .sI)iral,  ancl used
with great success in R3.

Interface Management  Process . ~oe~lsllredisco~lllects  wcrc kept toan)in-
imunl,  another requirement ackled by the project during the design phase of
each revision, was the clevelopment  of Protde7rl Statemmts, with details of each
modules’ clesign, interfaces ancl assumptions for that revision cycle. The planller
in aclditioll  also had a token dictionary with tile negotiated token level inter-
faces with the EXEC.  With the EX13C with which the planrler  representation
was tightly couplecl,  any agrecn~el~ts and assutnptions  ill the pla~incr’s  nlodel
were accurately document and easily  accessible via a world \vide web (JVLYW)
itltcrface  to the dictionary and disconnects cau.gilt early on. III order to avoid
disconnect swith respect to the hardware spccificationsj  especially asharclware
delivery  quantified  thel)crforma~lce,  tlle}I\$TNIT  wastllccelltral point ofcolltact
for clissenlinati[lg  information.

The project also n~ade sure that after the il~terface  parties al~cl the design
ldlase  for each cycle, but before the various teatlls  startecl  actually developing
code, a co7wept revicwwould  take ~)lacc. Each tcanl  woulcl publish a short docu-
ment  detailing their design choices and the assun~ptions n~ade, especially towards
ge~lerating thescenario inthecurrwnt  cyclca[ld theinterface requirernellts.  Any
disconnects  found wrolllcl recltlire  tlle~)rojcct  to fo]low through with thetcamin
question to ensure the new clcsign actually covered tlic complete scenario.

3 .5  D i s t r i bu t ed  Deve lopmen t

Because of geographically clistributed  teanw, desigll clocu[nents and interface
agree~llents \vere exchanged ~Jrinlarily via a W\f’tV  i~ltcrface with auto-posting
features as mentioned in [2]. ‘1’he  use of the Internet was decisive in successfully
collaborating over re:note  sites especially }vlie~l exctlallgitlg  device level ktlowl-
edge, For i[lstance,  the EI\VLIT would be al)le to ~mt  po~ver budget  allocatio~ls
over different devices whici] could be abstracted, lmrsed ad built into a table for
lookup cluritlg moclel gyleration time. This  Ivould  emwre that the ~)larlncr  mod-
els were consistent in their  power budgets wfittl those of the syste[ll engilwcring
and actually viable for generating robust plal~s.

.Additiollally, for short design and concc~)t reviews, a “llleet-nlc” tclq)llc)nic
s~st~~n  ~vas in l)laCc w i t h  Peor)lc callillg into a cctitra]  Illl[llt)er ~vllilc acccssitlg



t,llc welJ arltl viewirlg the sallle (locu~llellt sir[l(llt:tllc~o~lsly. T]lis greatly llelpcd  ill
cutting dow’rI tile time, effort aud cxpctlsc  of cwtultlutiug to a central  site.

Note also that a rcvisiou co~ltrol systelti  [3] wws iu l)lacc for all the source
code.

4 Open Issues

The DS1 project r)rescllted several challcvlges  ill knowledge acquisition, repre-
sentat ion, aud valiclat ion. The  DS 1 plauuer  proved capable of addressing these
issues, at least  to the extetlt  needed to satisfy the requitelneuts  of DS1. However,
there are a uumber  of issues that must  be resolved before this technology can be
used on a risk-iutoleraut scieuce ulissiou by spacecraft en.gi~lcers with xniuinlal
support from the plau~ler  clevelopluent  tearu.

4.1 Acquiring Heuristics is Difficult

Good heuristics are neecled to ruake the pla~l~ler search cornputationally  tractable.
lIeuristics tell the plauner  what decisions  are most  likely to be best at each choice
point  in the plauner  search algorithlu,  thereby reducing tlie seawh.  Developing a
good set of heuristics for the 1)S1 plauner  is curteutly very diflicult,  both because
it requires au intiulate kuowleclge of how the plauuer  search algorithtn  i[ltetacts
with the model, ancl because the planner requires exceptionally good heuristics
to achieve computational tractability. ‘1’he  DSI rooclel developers hacl this expe-
rience  and so were able to clevelop goocl heuristics, hut  these obstacles nlust  be
overcome  before spacecraft engineels  cau be expected tcj clevclo~) heuristics on
their own.

One solutiou  is to provide tools that derive heuristics auto~natically.  Such
tools have beeu discussed irl the tuachine  learlliug  aucl planuiug  literature. Two
of the more promisiug  approaches are to clerive heuristics automatically through
a static analysis of the plan nlodel  [4] or to learn  them  tJy watchiug  the behavior
of the planuer  over several runs orl a giveu model [9]. Uufortuuately,  the DS1
planner  requires exceptionally goocl heuristics to achieve tractability, and these
xuetbocls generally do not  produce heuristics of that caliber. The sensitivity of the
plauller  to the heuristic must  be reduced IJefore  autolnatic heuristic acquisitioll
call be feasible.

4 .2  Development  and Debugging Tools are Needed

Mocleliug could be nlade  considerably easier with e~’ell a few si[nple tools. Al-
though there was illsufficic~nt time  to develo~) t}leln for 1>S1, our exl)ericnce  with
developirlg a[ld debuggiug  ~Iuxlels  suggested a ~lutlll)cr  of desirable features. De-
velo~)irlg  tools along these lilws is one of out  Ilear tcrlll  goals.



Plan Visualization Tools. One problull  with the cu[-rent  systeln  is that it is
very difficult to understand what the pla[lllcr  is doi[ig, des~)ite copious output,
This makes  it diffkwlt to isolate the decisiot]s that lead to bugs in the plan, or
prevent the planner from finding any plan at all. A visualizatiorl  tool ~vould help
n~odelers  to track the plallllers  behavior, as well as [rlaking  it easier for new users
to understand how the planner  works.

Deactivat ing Timelines. W’hen clebuggillg,  the mocleler  often suspects the
bug is witbill  a s[nall family of timelil)es.  But as the ~nodel gets xnore conlplex,
it becotnes  clitlicult to focus on the behavior of those tilnelines.  A sinlple  way to
aclclress this problem is to clisable  irrelevatlt  tixnelines.  Tile planner ignores the
tin]elines  and all cotnpatibilities  associated with thenl.  This facility is rather easy
to acid, tllougb  there was insufficient time  to implement given the compressed
DS1 schedule.

Model Visualization Tools. As the model gets larger, it bccornes harcler to
keep iu mind all the constraints among  the parts of the Inodel. A nlodel  visu-
alization tool that displayec] a graphic  view of the model (or a subset) and the
constraints would help the modeler view this infornlatioll  as a whole,

4.3 Large Scale Validation of the Renlote Agent Planner

Before any spacecraft is launched, its flight software must be throughly  tested
ancl validated. The same  is true for autonomous flight software. I1owever,  the
valiciation  mcthocls usecl for traditional software are nc)t gexmrally ap~)licable  to
autollonlous  software. New methods must  be developed,

T}le planner can generate several thousancl  clifferetlt plans,  depending 011 the

nlission  goats, the spacecraft state, goals .generatecl oil-board by plan experts and
variations on the nlodel  parameters. To fully valiclate the planner, one must  be
sure that it will generate a correct plan for every one of those possible situations,
and that the plan can be executed correctly by t}le EXEC.

An alternative to generatil]g  allcl testillg  several thousand plans is to use
forn~al n~ethods to verify the n~odels ancl to verify t}lat the planner  proc]uces
plans that are consistent with the lnoclel. One ar)proacb is to capture the ftight
rules ancl other recluireuwx~ts  fortnally  as constrail~ts.  ancl ensure  tilat the rnoclel
is consistet]t  with all of the~n, atlcl that no constraints have been Inissed. A related
possibility is to convert tile nloclels into  a i~tllllaxi-reaclal)le forln al~d have then)
approved by cognizant  system  engi~leerx  (dorllaili experts).

Tools for autol~latically  generatilig  ancl validating plans  can greatly reduce
this cost. One of the tools we considered for 1)S1  I)ut  clid ~lot nave time  to i[[l-
plenle~lt was a collstrai[lt  checker that tested !vt~etller  tl~e plan satisfied certain
correctness co~wtraillts. These  ilicludc tlw collstraitlts  ill the Inoclcl, plus addi-
tional constraints derived frolll flight rules a~ld otllt’r o~wratioual  co[lstraiuts.



5 Conclusion

DS1 will be the first deep-space sl)acecraft  u[lder autonouwus  control. The conl-
l)lcxity of this clrm~aill raised a nunlber  of important knowledge acquisition ancl
representation) issues, some of whicli wc were able to address ancl sonle of which
renlain  open. Issues were also raised by the fast-l)aced  spiral developnlent  cy-
cle, the etnbedding  of the planner within the autonoruy  architecture, and the
risk-l~la~lage~llerlt  requirements of the space flight donlaiu.

These issues are not uniclue to DS1, alld are likely to occur on other projects
that require autononlous  control of a complex  cnvirollrnetlt.  As the role of au-
tonomy  increases in space exploration and other  areas, so will the itnportance of
finding good solutions to these issues.
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